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Abstract

Asymptotic analyses for dynamic propagation of mode I planar cracks in pressure-sensitive elastic±plastic
materials have been carried out. The material model adopted is based on the Drucker±Prager yield surface obeying
the associate ¯ow rule with linear isotropic hardening. The asymptotic solution is assumed to be of the variable-

separable form with a power singularity in the radial coordinate from the crack tip. Attention is focused on the
inertia e�ect on some features of the asymptotic solutions. It is found that for plane-strain cases, the range of
pressure sensitivity can be expanded by increasing the crack speed due to a delay in the occurrence of a hydrostatic

stress state ahead of the crack tip. An increase in crack speed produces a corresponding change in the characteristics
of the governing equations because of a tendency to produce strain and stress `jumps'. Material and loading mode-
dependent speed limits have also been studied under plane-strain and plane-stress conditions. In addition, numerical

results are presented for the strength of singularity, the angular distributions of stresses and velocities, and the
crack-tip constraint. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Asymptotic analysis; Crack-tip plasticity; Pressure sensitivity; Crack dynamics; Strength of singularity

1. Introduction

Since their yielding surfaces are dependent on the mean stress, extension of the classical
plasticity theory to include plastic dilatation has a signi®cant consequence for many materials, such
as metals, polymers, ceramics and rocks. For example, the void nucleation, growth and coalescence
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in ductile metals can produce local plastic dilatation so that stress relaxation can happen around

the crack tip. A continuum model developed by Gurson (1977) has been often used to investigate

the states of stress and strain ahead of the crack tip instead of the classical Prandt±Reuss theory.

It successfully captures many features at a later stage of material failure, such as reduction in

local stress and enhancement of plastic dilatation. Also, the phase transformation of second-phase

particles in ceramics and ceramic composites has aroused much interest in recent years because of

the speci®c mechanism of plastic deformation. (See, for example, Budiansky et al., 1983; Duan et

al., 1992 among others). A transformation from tetragonal to monoclinic phase of ZrO2 particles in

zirconia-based ceramics and composites can cause a large plastic dilatation with a comparable

magnitude of shear strains. Although di�erent failure micro-mechanisms exist in di�erent materials, a

useful and appropriate model for the macroscopic material behavior is found to be the Drucker±Prager

yield surface with associate ¯ow rule when small deformation is concerned. For instance, the

experimental observation of Chen and Reyes-Morel (1986) indicated that the dilatancy is in good

agreement with the prediction of the ¯ow rule.

Asymptotic study of near-tip ®elds, e.g., the singular HRR ®elds (Hutchinson, 1968; Rice and

Rosengen, 1968), plays an important role in establishing useful fracture criteria. In particular, simple

cases of quasi-static crack growth in elastic±perfectly plastic materials were analyzed by Slepyan (1974)

and Gao (1987). ``Quasi-static'' is used hereafter in the sense that the inertia e�ect is negligible.

Extension to include plastic reloading on the crack ¯anks in materials with linear hardening was studied

by Ponte-Castaneda (1987) to improve the analyses of Amazigo and Hutchinson (1977) for quasi-static

cracks, and were studied by Achenbach et al. (1981) and Ostlund and Gudmumdson (1988) for dynamic

cracks. Stahle (1993) considered analytically dynamic crack growth in very low strain-hardening

materials, and suggested that inertia might have a signi®cant in¯uence on the fracture process even at

fairly low crack tip speeds.

Li and Pan (1990) ®rst studied stationary cracks in pressure-sensitive elastic±plastic materials under

plane-strain conditions. Later, Bigoni and Radi (1993) provided useful insight into the asymptotic ®elds

for quasi-static planar cracks in pressure-sensitive materials. Their numerical results indicate that the

singularity of stress ®eld decreases with increasing pressure-sensitivity factor and that there is a singular

behavior of the yield locus in plane strain.

It is clear from the above that previous studies of asymptotic ®elds have not considered dynamic

crack growth in pressure-sensitive materials. Gao and Nemat-Nasser (1983) and Leighton et al. (1987)

have highlighted the e�ects of inertia on fracture mechanisms. But the quasi-static asymptotic results

always leave us with some confusion caused by the ignorance of inertia e�ects. For plane stress mode-I

dynamic cracks, Hermann and Potthast (1995) did provide some insightful information on dynamic

crack growth in elastic±plastic materials; but many important issues were left out. For example, the

stress and strain discontinuities and the change in the range of pressure-sensitivity arisen from the

inertia e�ect were not considered. Even though they used the plastic wave speed as the limit speed to

avoid the e�ect of fast propagation, it is known that the crack speed could reach as high as the

Rayleigh speed in plane stress. So, some salient features were also not studied in their paper. These

include the deviation of the maximum opening stress from the crack line and a tendency to produce

strain discontinuity or `jump' at high crack speeds.

The aim of this study is to address the in¯uences of crack velocity on the near-tip ®elds and on the

crack-tip constraint that is de®ned as the ratio of mean stress to e�ective stress. This de®nition adopted

here is di�erent from Du and Hancock (1991) and O'Dowd and Shih (1991), but is physically more

meaningful and in line with the earlier work of Rice and Tracey (1969) on void growth in rigid plastic

solids.
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2. Basic equations

2.1. Constitutive relations

Following the works of Drucker and Prager (1953) for granular media, Drucker (1973) for metals and
Chen and Reyes-Morel (1986) for ceramics, a simple isotropic elastoplastic model with linear hardening
is adopted. The yield locus f in stress space is the combination of two stress invariants,

f�sij � � te � msm � H�W p� �1�

where te � �sijsij=2�1=2, sij � sij ÿ smdij, sm � skk=3, W p is the plastic work, and m is the pressure-
sensitivity factor.

According to the procedure of Li and Pan (1990), the generalized e�ective stress sge which is reduced
to non-zero stress components in uniaxial tension, is:

sge � se �
���
3
p

msm �2�
where se �

���
3
p

te:
The value of m can be obtained from the compressive yield strength sc and the tensile yield strength st

via the relation given by Needleman and Rice (1978):

m �
���
3
p sc ÿ st

sc � st

�3�

The experimental data in Carapellici and Yee (1986) showed that the factor m for glassy bisphenol A-
polycarbonate is about 0.14. For ZrO2-containing ceramics, it may be as high as 0.69 or more, see Chen
and Reyes-Morel (1986). It should be noted that this model is reduced to the J2-¯ow theory when the
parameter m becomes zero.

It is assumed that the plastic strain follows the associate ¯ow rule. The resultant incremental
elastoplastic stress±strain relation between the stress rate _sss and the velocity of deformation _e is:

_e � 1

E

�
�1� n� _sÿ n tr� _s�I� 1

h
hQ � _siQ

�
�4�

where n is the Poisson ratio, E the elastic modulus; h the hardening modulus divided by E, its value can
be obtained from the bilinear strain-hardening model as shown in Fig. 1, via the expression,
1=�2�1� n�h� � �1=a� ÿ 1, in which a � Gt=G: The symbol h i denotes the McAulay brackets and Q is the
gradient of the yield surface in stress space,

Qij � m
3
dij �

���
3
p

2

sij
se

�5�

2.2. Kinematics conditions

A Cartesian reference system is shown in Fig. 2 with the origin located at the moving crack tip. For
convenience, the polar system is also given. All ®eld variables are referred to the moving Cartesian
coordinates (x1, x2, x3) or the cylindrical coordinates �r, y, x3). As stated in Ostlund and Gudmumdson
(1988), the following identity which relates the material derivative to the spatial derivative along x1, is
well approximated at r40:
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� � � � ÿV� �,1� ÿV
�

cos y� �,rÿ
sin y
r � �,y

�
�6�

where V denotes the crack-tip velocity.
The relations between strain rates and deformation velocities can be written as:

_eij � 1

2
�vi, j � vj, i � �7�

where vi are the two non-zero in-plane velocities and v3 � 0 for plane-strain cases.

2.3. Equations of equilibrium

Referring to the cylindrical system, under generalized plane stress, the equations of equilibrium take
the forms:

�rsrr �,r�sry, y ÿ syy � rr _vr

Fig. 1. Shear stress±strain curve in simple shear test.

Fig. 2. The reference systems: Cartesian coordinates (x1, x2, x3) and cylindrical coordinates �r, y, x 3� are centered at the crack-tip

and move as the crack grows.
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�rsry�,r�syy, y � sry � rr _vy �8�

where r is the material density and the superposed dot denotes the material time derivatives. The
following discussions are based on a relative crack speed, mv � V=Cs, Cs �

���������
G=r
p

is the shear wave
speed.

2.4. Stress- and strain-rate tensors

Observing the polar coordinate's base vector er, ey, we have:

Çer � V

r
eysin y

Çey � ÿV
r

ersin y �9�

And the material derivatives of the ®eld variables have the forms:

�Çeiv� � Çeiv� ei Çv

ÿ
ei _sej

� � Çeisej � ei _sej � eisÇej �10�

This yields the following expressions for velocity and stress-rate tensors in the cylindrical coordinates:

_vr � V

�
sin y
r
�vr, y � vy� ÿ vrcos y

�

_vy � V

�
sin y
r
�vy, y ÿ vyr � ÿ vycos y

�
�11�

and

_sry � V

�
sin y
r
�sry, y ÿ srr � syy � ÿ sry, rcos y

�

_srr � V

�
sin y
r

ÿ
srr, y ÿ 2sry

�ÿ srr, rcos y

�

_syy � V

�
sin y
r
�syy, y � sry� ÿ syy, rcos y

�

_s33 � V

�
sin y
r

s33, y ÿ s33, rcos y

�
�12�

Moreover, Eq. (7) becomes:

_err � vr, r
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_eyy � 1

r
�vy, y � vr �

_ery � 1

2

�
vy, r � 1

r
�vr, y ÿ vy�

�

_e33 �
�
0 plane strain

v3, 3 plane stress
�13�

2.5. Asymptotic expressions

Linearly strain-hardening plasticity is assumed here, so that the variable-separable asymptotic method
holds since all basic equations are elliptic and homogeneous in r. Similar to the procedure of Amazigo
and Hutchinson (1977) and Ponte-Castaneda (1987), we have:

vr � k�V=E�rs=sy1�y�

vy � k�V=E�rs=sy2�y�

sry � krsy3�y�

srr � krsy4�y�

syy � krsy5�y�

s33 �
�
krsy6�y� plane strain

0 plane stress
�14�

where s is a negative constant, referred to as the singularity index of the near-tip ®elds, k is the plastic
stress intensity factor (PSIF), which cannot be determined from the asymptotic method; yi�y� are
undetermined functions.

2.6. Unloading condition

The critical condition for a material element ahead of the crack tip experiencing elastic unloading
depends on the sign of the following plastic multiple. Thus, elastic unloading occurs when:

Qij _sijR0 �15�

2.7. Reloading conditions

Plastic reloading near the crack ¯anks has been allowed for in the asymptotic analysis of Ponte-
Castaneda (1987) and Bigoni and Radi (1993). The possibility of the existence of a plastic reloading
sector has been analyzed when the stress states of a material element in the crack wake reach the yield
surface that is left behind after unloading. For pressure-sensitive materials, the critical conditions for
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occurrence of plastic reloading are:

Qij _sij > 0 and
sge�y2 �
sinsy2

� sge�y1�
sinsy1

�16�

where the angles y1 and y2 correspond to the angles of elastic unloading and plastic reloading,
respectively.

2.8. Continuity conditions across the elastic±plastic boundary

It has been proved that for quasi-static crack growth in elastic±plastic materials which are stable in
Drucker's sense, the continuities of stress and velocity are satis®ed across the elastic±plastic boundary,
see Narasimhan and Rosakis (1987). However, as mentioned in Section 1, the continuity is questionable
in the presence of inertia e�ect because discontinuity in strain ®elds is detected in ®nite element analyses,
such as performed by Varias and Shih (1994). To obtain fully continuous solutions, compete continuities
of stresses and velocities are assumed to be valid everywhere and across the elastic±plastic boundary.
Thus:

ksijk � kvik � 0 �17�
where k k denotes a `jump' of the quantity across the boundary.

2.9. Final ODEs

Substituting Eq. (14) into Eqs. (4), (8) and (11)±(13), we can obtain the ®nal governing equations for
the crack problems proposed. Its general form can be expressed by:

A �
�

dY

dy

�
� B �18�

where matrices A and B are functions of material parameters and crack-tip velocity. The special forms
of these two matrices under plane-strain and plane-stress conditions are given in Appendix A.

2.10. Boundary conditions

Mode I symmetry and the regularity of functions yi at y � 0 requires that:

y 01�0� � y2�0� � y3�0� � y 04�0� � y 05�0� � y 06�0� � 0 �19�
while on the crack surface, tractions syy and sry both vanish. Hence:

y3�p� � y5�p� � 0 �20�
Continuity of all ®elds requires no `jump' across the elastic±plastic boundary. Thus:

kyik � 0 �21�
Furthermore, the normalization condition must be introduced so that all initial values of yi are speci®ed
at y � 0, Thus:

y5�0� � 1 �22�
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2.11. Solution methods

The above system of ®rst-order ordinary di�erential equations can be solved using standard Runge±
Kutta method and Newton±Raphson iteration scheme, as discussed by Press et al. (1992). The values of
s and y4�0� are assigned tentatively. Then, integration is performed and the values of y3�p� and y5�p� are
checked. On the basis of the errors in y3�p� and y5�p�, new values of s and y4�0� are assigned by the line
search and back-tracking method. The numerical results reported here have been obtained by using a
double-precision program with a relative error in each step less than 10ÿ8±10ÿ10. Since the matrix A in
Eq. (18) is singular at y � 0, a restriction condition y 04�y� � y 06�y� � 0 is imposed for the very small angle
range �y < 10ÿ7).

3. Plane strain

3.1. Stress singularity and angular sectors

Tables 1±4 provide the numerical results of s, y4�0�, y1 and y2 for mode I plane-strain cracks at
various crack speeds and material parameters. All results are presented for n � 1=3: The magnitudes of s
at mv � 0 match exactly with the quasi-static results of Bigoni and Radi (1993). As in the case of the J2-
¯ow theory, jsj is large for high hardening materials and is close to zero for very low hardening
materials (i.e. a40). In addition, at the same crack speed, the singularity of the ®elds decreases with
increasing m as reported in Bigoni and Radi (1993). With increasing crack velocity, jsj tends to decrease
until a limit velocity is attained. This speed limit mmax

v depends very much on the material constants, for
instance, mmax

v � 0:8 at a � 0:75 and mmax
v � 0:1 at a � 0:01: It is noted that the speed limit at m � 0 is

very similar to that predicted by Ostlund and Gudmumdson (1988) in which the crack speed is
normalized by the longitudinal wave speed. It is interesting that the speed limit is not strongly a�ected
by m for all a: Note that the stress singularity approaches ÿ0.5 for a � 0:75 if the crack speed is above
the limit velocity. This conclusion is consistent with the numerical study of Freund and Douglas (1982)
who show that the elastic response dominates the plastic response near the elastic wave speed. However,
for low strain hardening materials, this trend has not been found because the speed limit is far lower
than the elastic shear wave speed.

Table 1

Numerical results of s, y4(0), y1 and y2 under plane-strain condition �a � 0:75)

m mv s y4(0) y1 y2

0 0.0 ÿ0.48066 1.11846 91.58

0.6 ÿ0.46849 1.49188 101.59

0.8 ÿ0.48993 4.17712 37.31 84.38

0.1 0.0 ÿ0.47539 1.09951 89.03

0.6 ÿ0.46228 1.44184 99.74

0.8 ÿ0.49049 4.21098 39.28 84.08

0.3 0.0 ÿ0.46318 1.05348 84.84

0.6 ÿ0.44806 1.33878 96.46

0.8 ÿ0.49116 4.31046 42.70 83.53

0.5 0.0 ÿ0.44983 1.00900 81.67

0.6 ÿ0.43250 1.23813 93.48

0.8 ÿ0.48980 4.46147 45.70 82.99
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Besides the reduction in s, inertia e�ect also extends the range of m, as shown in Tables 2 and 4. For
quasi-static plane-strain crack growth in pressure sensitive materials, the state of stress on the crack line
tends to a hydrostatic tension (i.e., y4�0� � 1� with increasing m: This also happens for non-zero crack
speeds, as given in Tables 1±4 in which y4�0�41 for some crack speeds. The value of the maximum
pressure sensitivity factor mlim in Bigoni and Radi (1993) is 0.1 for a � 0:1 and 0.33 for a � 0:001:
However, it can be increased to 0.14 for a � 0:1 and 0.43 for a � 0:001 at their speed limits. It can be
seen from Tables 2 and 4 that the occurrence of the hydrostatic tension can be delayed by the inertia
e�ect.

Another in¯uence of material inertia is the change in the characteristics of the governing equations,
which is the cause for the speed limit. Based on the coe�cients of the system of ODEs listed in
Appendix A, the following equations can be obtained for the angular functions of stress rates
_~sij � _sij=�EVrsÿ1�:

_~sry � ÿb1 � a11y
0
1=2

Table 2

Numerical results of s, y4(0), y1 and y2 under plane-strain condition �a � 0:1)

m mv s y4(0) y1 y2

0 0.0 ÿ0.20957 1.09033 122.21 175.31

0.2 ÿ0.18137 1.09242 115.43 177.19

0.3 ÿ0.10924 1.07362 101.36 179.95

0.1 0.0 ÿ0.20179 1.01200 107.60 179.88

0.2 ÿ0.17743 1.02667 102.65 179.98

0.3 ÿ0.11179 1.04441 95.94

0.12 0.2 ÿ0.176864 1.00083 100.80 179.99

0.3 ÿ0.114332 1.02827 94.96

0.31 ÿ0.088937 1.03856 94.62

0.14 0.3 ÿ0.116347 1.00329 94.16

Table 3

Numerical results of s, y4(0), y1 and y2 under plane-strain condition �a � 0:01)

m mv s y4(0) y1 y2

0 0.000 ÿ0.08242 0.79744 135.20 146.29

0.050 ÿ0.07190 0.79613 133.85 147.93

0.090 ÿ0.04134 0.79661 126.87 156.11

0.1 0.000 ÿ0.07839 0.88495 131.60 144.66

0.050 ÿ0.06872 0.88148 130.27 146.36

0.075 ÿ0.05471 0.87735 127.75 149.78

0.100 ÿ0.01165 0.89747 95.00 179.47

0.2 0.000 ÿ0.07416 0.99042 127.75 143.82

0.050 ÿ0.06578 0.97773 126.49 145.51

0.075 ÿ0.05323 0.96304 123.96 148.96

0.100 ÿ0.01738 0.93746 99.57 174.33
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_~syy � ÿb2 � a22y
0
2 �23�

and

_~srr � c4 ÿ c41a11y
0
1=2ÿ c42a22y

0
2

_~s33 � c6 ÿ c61a11y
0
1=2ÿ c62a22y

0
2 �24�

where c4 and c6 are continuous function of y: c41 � �a43a66 ÿ a46a63�=D1, c42 � �a45a66 ÿ a46a65�=D1,
c61 � �a63a44 ÿ a64a65�=D1 and c62 � �a65a44 ÿ a64a45�=D1, and D1 � a44a66 ÿ a64a46:

Substituting Eqs. (23) and (24) into Eq. (18), the governing equations for the velocities become:

d11y
0
1=2� d12y

0
2 � e1

d21y
0
1=2� d22y

0
2 � e2 �25�

where e1 and e2 are continuous functions of y, d11 � a31 � a11�a33 ÿ c41a34 ÿ c61a36�,
d12 � a22�ÿc42a34 ÿ c62a36 � a35�, d21 � a11�ÿc41a54 ÿ c61a56 � a53�, and d22 � a52 � a22�a55 ÿ c42a54 ÿ
c62a56�:

We denote the determinant of the coe�cient matrix in Eq. (25) by D2 � d11d22 ÿ d12d21: It can be seen
from Fig. 3 that when mv approaches 0.1, D2 is equal to zero at y � 908: And this would yield the result
for y 01 or y 0241: As a consequence, the rapid variation in velocities can lead to a strain discontinuity.
The strain discontinuity caused by non-zero crack speed has been reported in the ®nite element results
of Lam and Freund (1985) and Varias and Shih (1994) from classical elastic±plastic theory. It is also
shown that for steady-state crack growth �mv � 0), D2 is unity everywhere and the strain discontinuity
cannot occur in this case. This is consistent with the theoretical analysis of Narasimhan and Rosakis
(1987) for quasi-static crack growth in elastic±plastic materials.

The angular positions of elastic unloading y1 and plastic reloading y2 are also given in Tables 1±4.
Clearly, the range of elastic unloading sectors �y2 ÿ y1� expands as crack speed increases, except a �

Table 4

Numerical results of s, y4(0), y1 and y2 under plane-strain condition �a � 0:001)

m mv s y4(0) y1 y2

0.0 0.000 ÿ0.05641 0.75381 137.02 138.52

0.020 ÿ0.03977 0.74385 136.09 138.62

0.1 0.000 ÿ0.05369 0.82810 133.88 135.56

0.020 ÿ0.03837 0.81480 132.96 135.81

0.2 0.000 ÿ0.05003 0.89696 130.63 132.56

0.020 ÿ0.03647 0.88006 129.70 133.13

0.3 0.000 ÿ0.04561 0.96364 127.12 129.75

0.020 ÿ0.03412 0.94060 126.23 130.57

0.030 ÿ0.01544 0.90559 123.60 135.20

0.35 0.020 ÿ0.03281 0.97139 124.46 129.46

0.030 ÿ0.01570 0.93128 121.83 134.25

0.39 0.025 ÿ0.02552 0.97797 122.26 129.80

0.030 ÿ0.01590 0.95129 120.38 133.57

0.43 0.030 ÿ0.01616 0.97142 118.87 132.98
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0:75: The angular range of the elastic unloading zone for low hardening materials also increases with the
pressure sensitivity factor.

3.2. Stress components

Fig. 4 shows the angular stress distributions for di�erent crack velocities in the case of a � 0:01 and
m � 0:1: Clearly, the di�erence is very small except the curves at the highest crack velocity mv � 0:1: As
in Bigoni and Radi (1993), there is a steep variation in srr near the crack ¯ank, as shown in Fig. 4(b),
which may contribute to the residual stresses in the crack wake. Its e�ect on the fracture toughness
enhancement is of interest in failure assessment, see Budiansky et al. (1983) and Leighton et al. (1987).
At high crack speeds, the extension in the angular range of large normal stresses is evident in Fig. 4.
More importantly, the rapid variation of the shear stress sry near y � p=2 is displayed in Fig. 4(a). This
tendency to a stress `jump' may be attributed to the loss of ellipticity of the governing equations as the
determinant of coe�cient matrix D240 in Fig. 3. It is interesting to note that the location for strain
discontinuity is the same as the numerical results in Lam and Freund (1985) and Varias and Shih
(1994).

The angular variations of hydrostatic and e�ective stresses with crack speed for a � 0:01 and m � 0:1
are given in Fig. 5. The extensions of the angular regions with high mean stress and low e�ective stress
for mv � 0:1 are clearly shown in this ®gure.

3.3. Crack-tip constraint

The non-uniqueness of hydrostatic stress ahead of the crack tip under di�erent specimen geometry has
been rigorously studied in the past, see, for example, Matsoukas et al. (1986), Wu et al. (1995) and
Hancock et al. (1993). Thus, usage of the fracture toughness measured with small-size laboratory
specimens for failure assessment of large-size engineering structures is often invalid. The crack-tip

Fig. 3. Typical plots of the angular variations of D2 obtained for various crack speeds for the cases of a � 0:01 and m � 0:1 in

plane strain.
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constraint can be quanti®ed in terms of T-stress as in Du and Hancock (1991) or Q�-stress as in
O'Dowd and Shih (1991). Considering the importance of mean and e�ective stresses in the failure
criteria for cleavage fracture and ductile tearing, and in the evolution equations of micro defects, like
voids and shear bands, it seems reasonable to de®ne the crack tip constraint as the ratio of mean stress
to e�ective stress. Thus:

stotal
m

se

� ssingular
m

se

� Q�=f�T�
se

�26�

Fig. 6 shows the angular distributions of the ®rst term in the RHS of Eq. (26) at di�erent crack speed
and pressure-sensitive factor. It is shown that a near constant value is obtained for sm=se ahead of the
crack tip and the angular range with constant stress ratio increases with crack velocity. But increasing
crack speed has little in¯uence on its magnitude when mv is less than 0.075. At high crack speeds,
mvr0:075, however, the increasing trend in the stress ratio is detectable from Fig. 6(a). In addition, an
increase in m reduces the stress ratio rapidly as shown in Fig. 6(b).

Fig. 4. Angular distributions of four stress components for various crack speeds under the condition a � 0:01 and m � 0:1 in plane

strain.
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3.4. Velocity ®elds

Fig. 7 shows the angular distributions of velocities for a � 0:01 and m � 0:1: When the crack speed is
large, that is mv � 0:1, there appears to be a kink in vr at y � 908: The assumption of strain
discontinuity or `jump' is, hence, recon®rmed here. This fast variation in velocities can lead to increases
in the stresses de®ned in Eqs. (23) and (24), although the magnitudes are substantially reduced by the
coe�cients a11 and a22. Conversely, it is shown that the plastic strains ahead of the crack tip become
small by increasing the crack speed due to reductions in the magnitude of vr and the gradient of vy:

4. Plane stress

4.1. Singularity index and angular sectors

Numerical results for the strength of singularity s, the elastic unloading angle y1 under plane-stress

Fig. 5. Angular distributions of hydrostatic and e�ective stresses for di�erent crack speeds for the cases of a � 0:01 and m � 0:1 in

plane strain.

Xi Zhang, Y.-W. Mai / International Journal of Solids and Structures 37 (2000) 6297±6319 6309



Fig. 6. Angular distributions of the stress ratio sm=se in the case of a � 0:01: (a) for di�erent crack speed at m � 0:1 and (b) for

di�erent values of m at mv � 0:05 in plane strain.

Fig. 7. Angular distributions of velocity ®elds for di�erent crack speeds in the case of a � 0:01 and m � 0:1 in plane strain.
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Table 5

Numerical results of s, y4(0), y1 under plane-stress condition �a � 0:1)

m mv s y4(0) y1

0 0.00 ÿ0.23725 0.62269 73.89

0.20 ÿ0.23024 0.63354 75.49

0.40 ÿ0.19677 0.68629 81.83

0.60 ÿ0.24727 0.73465 41.21

0.80 ÿ0.30142 0.88220 36.44

0.85 ÿ0.19664 1.30524 47.60

0.2 0.00 ÿ0.21812 0.51935 69.61

0.20 ÿ0.21169 0.53002 71.14

0.40 ÿ0.18056 0.58575 77.47

0.60 ÿ0.22020 0.62231 38.45

0.80 ÿ0.28356 0.74405 31.95

0.85 ÿ0.19331 1.14560 41.27

0.4 0.00 ÿ0.20382 0.41795 66.17

0.20 ÿ0.19795 0.42859 67.66

0.40 ÿ0.16932 0.48594 73.91

0.60 ÿ0.19871 0.51908 36.36

0.80 ÿ0.26381 0.62899 29.16

0.85 ÿ0.23409 0.84901 32.92

0.8 0.00 ÿ0.18500 0.20315 61.32

0.20 ÿ0.18020 0.21453 62.69

0.40 ÿ0.15717 0.27429 68.57

0.60 ÿ0.16996 0.31790 33.63

0.80 ÿ0.22667 0.42869 25.77

0.85 ÿ0.23330 0.57342 25.73

Table 6

Numerical results of s, y4(0), y1 under plane-stress condition �a � 0:01)

m mv s y4(0) y1

0 0.00 ÿ0.08629 0.53024 61.27

0.20 ÿ0.06549 0.54186 40.09

0.40 ÿ0.10004 0.52840 22.33

0.60 ÿ0.13682 0.52726 15.81

0.80 ÿ0.20113 0.54327 12.47

0.2 0.00 ÿ0.07946 0.42792 56.02

0.20 ÿ0.05745 0.44052 36.69

0.40 ÿ0.08575 0.42538 20.16

0.60 ÿ0.11677 0.42392 14.14

0.80 ÿ0.17412 0.43839 10.98

0.4 0.00 ÿ0.07475 0.32282 52.20

0.20 ÿ0.05185 0.33709 34.17

0.40 ÿ0.07525 0.32029 18.44

0.60 ÿ0.10223 0.31842 12.80

0.80 ÿ0.15380 0.33231 9.85

0.8 0.00 ÿ0.06978 0.08236 46.35

0.20 ÿ0.05003 0.09954 30.97

0.40 ÿ0.06043 0.08142 16.01

0.60 ÿ0.08222 0.07796 10.92

0.80 ÿ0.12505 0.09343 8.30
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conditions are presented in Tables 5±7 for n � 0:5 and a � 0:001, 0.01 and 0.1. The magnitudes of s and
y1 at vanishing crack speeds are consistent with the quasi-static results obtained by Bigoni and Radi
(1993) under plane-stress conditions. For the dynamic cases, if we normalize the crack speed by the
longitudinal wave speed, we obtain s � ÿ0:23211 and y1 � 74:878 for a � 0:1 and mL � 0:1 �mL � V=CL,
CL �

���������
E=r
p

). This result agrees very well with s � ÿ0:232 and y1 � 74:758 as obtained by Ostlund and
Gudmumdson (1988). Note that the range of crack speeds and pressure-sensitive factors is much larger
than that in plane strain. It can be expected that this is caused by the delay of the occurrence of D2 � 0
and the elimination of the singular behavior of the yield locus. The crack speed can reach as high as the
Rayleigh speed regardless of the material's hardening index. But there exists a crack speed limit, mlim

v ,
below which the stress singularity decreases with increasing crack speed. This limit, mlim

v , decreases with
decreasing hardening index. (See Tables 5 and 6.) It vanishes for a � 0:001: This phenomenon can only
be found at a � 0:75 for plane strain, and it cannot be detected for small a: It is interesting that in low
strain-hardening materials, the strength of singularity (ÿs ) also decreases with crack speed. In contrast,
there is a decreasing trend in plane strain as shown in Tables 2±4. In addition, the values of s at high
crack speeds can be several times of those for quasi-static growth for a � 0:001: Plastic reloading is not
considered for plane stress. The angular range of plastic zones increases with crack speed, if it is not
very large, for high and medium hardening materials. However, for small a, only the decreasing trend in
the plastic sectors is detected and y1 decreases rapidly when the crack speed approaches the elastic wave
speed. For example, when a � 0:001, m � 0:8 and mv � 0:6, the range of the plastic zone is 0.0622, less
than 58.

Di�erent from the results for plane-strain cases where the elastic response caused by inertia e�ect can
only be dominant at high a's, the inertia e�ect becomes the main reason for cracks to propagate in a
brittle manner even for small a's. It is found from Tables 6 and 7 that the inertia e�ect can increase the
stress singularity and reduce the plastic zone to a narrow strip ahead of the crack tip. Hermann and

Table 7

Numerical results of s, y4(0), y1 under plane-stress condition �a � 0:001)

m mv s y4(0) y1

0 0.00 ÿ0.02867 0.50788 54.44

0.20 ÿ0.03280 0.50473 16.02

0.40 ÿ0.04669 0.50285 8.59

0.60 ÿ0.06249 0.50267 5.84

0.80 ÿ0.09606 0.50437 4.42

0.2 0.00 ÿ0.02658 0.40657 49.92

0.20 ÿ0.02818 0.40359 13.97

0.40 ÿ0.03991 0.40182 7.35

0.60 ÿ0.05335 0.40164 4.97

0.80 ÿ0.08208 0.40312 3.75

0.4 0.00 ÿ0.02516 0.30147 43.55

0.20 ÿ0.02489 0.29857 12.45

0.40 ÿ0.03522 0.29682 6.47

0.60 ÿ0.04707 0.29663 4.35

0.8 0.00 ÿ0.02394 0.05664 36.86

0.20 ÿ0.02042 0.05389 10.43

0.40 ÿ0.02904 0.05177 5.32

0.60 ÿ0.03886 0.05153 3.56
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Fig. 8. Angular distributions of three stress components for various crack speeds under the condition a � 0:01, m � 0:2 in plane

stress.
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Fig. 9. Angular distributions of (a) hydrostatic stresses, (b) e�ective stresses and (c) sm=se ratio for di�erent crack speeds for the

cases of a � 0:01 and m � 0:1 in plane stress.
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Potthast (1995) cannot obtain this conclusion in their work because they have restricted the crack speed
to lower than the plastic shear wave speed, Cspl �

����������
Gt=r
p

:

4.2. Stress ®elds

Fig. 8 shows the variation of stress components with crack speed for a � 0:01 and m � 0:2: An
increase in crack velocity causes obvious changes in all stress components. A kink in the syy curves is
detected. The maximum hoop stress ahead of the crack tip shown in Fig. 8(c) is located in a direction at
about 158 to the crack line when mv � 0:6±0:8: It increases with crack speed. This feature was ®rst
mentioned by Yo�e (1951) as due to the inertia e�ect and was used to explain the tendency for a
growing crack in brittle materials to bifurcate or to branch. It is concluded that this mechanism also
exists in ductile materials, but the de¯ected angle is much smaller than 608 provided by Yo�e (1951). So,
plasticity can con®ne the crack branches to propagate only slightly away from the crack line. Another
feature is the rapid increase in shear stress at y � p=2 when mvr0:8: Relatively low normal stress and
large shear stress near y � p=2 may be the driving force for the formation of shock waves when mv

approaches the Rayleigh wave speed.
It can be seen from Fig. 9 that there exists a small variation in angular distributions of the mean and

e�ective stresses ahead of the crack tip with increasing crack speed. The ratio sm=se ahead of the crack
tip is not a�ected much by crack speed. This means that the crack-tip constraint plays a negligible role
for failure assessment in plane stress.

4.3. Velocity ®elds

The angular variations of near-tip velocity ®elds are plotted in Fig. 10 for di�erent crack speed for
cases of a � 0:01 and m � 0:2: It shows a kink, or a tendency to produce a strain `jump', at the elastic±
plastic boundary. This kink becomes more signi®cant when mv approaches the Rayleigh wave speed.
The plastic deformation in the plastic sector becomes intense at high crack speeds although the plastic
zone shrinks. Deng and Rosakis (1991) argued that the intense deformation ahead of the crack tip is a
good reason to adopt a shear strain failure criterion.

Fig. 10. Angular distributions of velocity ®elds in the case of a � 0:01 for di�erent crack speeds in plane stress.
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5. Conclusions

Asymptotic analyses have been carried out in this paper for mode I planar dynamic cracks in
pressure-sensitive materials with linear hardening. Numerical results are provided to account for the
inertia e�ect. Conclusions similar to quasi-static crack growth studied by Bigoni and Radi (1993) are
recovered for a variety of material parameters for cases of zero crack speed. The results reveal many
features about the strength of the singularity, the size of active plastic zone and near-tip variations of
stress and velocity ®elds. The following are the most important conclusions of this work.

5.1. Plane strain

1. An increase in crack velocity reduces the stress singularity and the plastic deformation ahead of the
crack tip. But there exists a crack speed limit due to the requirement of fully continuous near-tip
®elds. This speed limit, mmax

v , decreases with the material hardening index a, and it is much less than
the elastic wave speed at low a: All results are restrained by the condition that the crack speed is
below this speed limit.

2. The calculated results indicate that the speed limit is caused by the loss of ellipticity of the governing
equations. The kinks in stress and strain ®elds evidently lead to corresponding discontinuities or
`jumps'. However, Drugan (1998) has excluded the discontinuity for subsonic dynamic crack growth
on thermodynamics arguments. The inconsistency of his theoretical study with numerical results, such
as obtained by Lam and Freund (1985), Deng and Rosakis (1991) and Varias and Shih (1994), and
the asymptotic analyses of Ponte-Castaneda (1987), Ostlund and Gudmumdson (1988) and the present
work, begs further studies.

3. The occurrence of the hydrostatic state of stress ahead of the crack tip can be delayed by the inertia
e�ect. Asymptotic solutions can be obtained for high values of mv and m: It is seen that the inertia
e�ect becomes more signi®cant at large m:

4. The constraint e�ect should be taken into account at high crack speeds when a and m are large. It is
found that the ratio of mean to e�ective stresses decreases sightly when the crack speed is not too
large. But high crack speeds can increase the stress ratio remarkably.

5.2. Plane stress

1. There is no restriction on crack speed provided that it is less than the Rayleigh wave speed. For large
or medium strain-hardening indices, the strength of singularity would decrease with increasing crack
speed until a speed limit is attained. Beyond this limit, s will increase with crack speed. However, for
fast crack growth in low hardening materials, the strength of singularity increases with all crack
speeds studied. In contrast, it decreases in all plane-strain cases.

2. The plastic deformation ahead of the crack tip becomes intense with increasing crack speed, though
the plastic zone is reduced.

3. There are kinks in the stress and velocity ®elds at the elastic±plastic boundary. As the crack speed
increases, so is the gradient of the angular distributions. It is shown that a change in the
characteristics of the governing equations happens when the crack speed approaches the Rayleigh
wave speed.

4. Inertia e�ect cannot change the crack-tip constraint because the stress ratio seems insensitive to the
variation of crack speed.
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Appendix A. The coe�cients of matrices A and B

The coe�cients of the matrices A and B in Eq. (18) are given below:

a11 � 2
cv
s

sin2y, a13 � ÿ1;

a22 � cv
s

sin2y, a25 � ÿ1;

a31 � ÿ1, a33 � s

�
1� n� 2

h
QryQry

�
,

a34 � s

h
QrrQry, a35 � s

h
QyyQry, a36 � s

h
Q33Qry;

a43 � 2

h
QryQrr, a44 � 1� 1

h
QrrQrr

a45 � ÿn� 1

h
QyyQrr, a46 � ÿn� 1

h
Q33Qrr;

a52 � ÿ1, a53 � 2s

h
QryQyy, a54 � s

�
ÿ n� 1

h
QrrQyy

�
,

a55 � s

�
1� 1

h
QyyQyy

�
, a56 � s

�
ÿ n� 1

h
Q33Qyy

�
;

a63 � 2

h
QryQ33, a64 � ÿn� 1

h
QrrQ33,

a65 � ÿn� 1

h
QyyQ33, a66 � 1� 1

h
Q33Q33:

b1 � cvsin y

�
y1cos y� sin y

s
y2

�
� s�y3cos y� y4sin y�
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b2 � cvsin y

�
y2cos yÿ sin y

s
y1

�
� s�y5cos y� y3sin y�

b3 � sÿ 1

2
y2

b4 � y1

b5 � y1

b6 � 0

in which cv � m 2
v =�2�1� n��:

It should be mentioned that any coe�cient related to the x3-direction must be cancelled out in the
plane-stress cases.
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